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Abstract
Large language models (LLMs) often struggle
with complex reasoning tasks due to their lim-
itations in addressing the vast reasoning space
and inherent ambiguities of natural language. We
propose the Mixture-of-Search-Agents (MOSA)
paradigm, a novel approach leveraging the col-
lective expertise of multiple LLMs to enhance
search-based reasoning. MOSA integrates di-
verse reasoning pathways by combining indepen-
dent exploration with iterative refinement among
LLMs, mitigating the limitations of single-model
approaches. Using Monte Carlo Tree Search
(MCTS) as a backbone, MOSA enables multiple
agents to propose and aggregate reasoning steps,
resulting in improved accuracy. Our comprehen-
sive evaluation across four reasoning benchmarks
demonstrates MOSA’s consistent performance
improvements over single-agent and other multi-
agent baselines, particularly in complex mathe-
matical and commonsense reasoning tasks.

1. Introduction
Large language models (LLMs) face challenges with com-
plex reasoning, even when augmented with linearized rea-
soning chains (e.g., Chain-of-Thought), due to the vast
reasoning space inherent in the complexity and ambigu-
ity of natural languages. A promising approach is step-wise
search-based reasoning, which decomposes the reasoning
problem into a traversal over a directed graph, where nodes
and edges represent individual reasoning sub-steps dis-
tributed across the expansive reasoning space. Related meth-
ods have applied various search algorithms to LLMs, such
as breadth-first search (BFS), depth-first search (DFS) (Yao
et al., 2024; Besta et al., 2024), and best-first search (Hao
et al., 2023; Zhang et al., 2024a; Qi et al., 2024).

A successful search trial is featured with diverse yet effective
explorations (Hao et al., 2023; Yao et al., 2024). A straight-
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Figure 1: Reasoning performance on MATH-500 against
search trajectory diversity. While the diversity of single-
LLM search varies with different sampling temperatures,
the multi-LLM search consistently achieves superior perfor-
mance. More details are provided in § 4.1.

forward method to enhance diversity involves increasing
the temperature, thereby making the probability distribution
more uniform. This is typically combined with top-k and
top-p sampling to balance diversity and quality. However,
as shown in Figure 1, despite these sampling techniques,
achieving a balance between diversity and quality remains
challenging and necessitates careful tuning. Besides, even
with near-optimal sampling parameters, a single LLM might
still get trapped in local optima due to constraints inherent
in its training data and architectural design.

To mitigate this limitation, an alternative solution is to ag-
gregate the specialized strengths of multiple LLMs. Re-
cent work (Wang et al., 2024b) has demonstrated that mul-
tiple LLMs can collaboratively enhance their instruction-
following capabilities by post-editing each other’s responses
to the same instruction. Motivated by this progress, we ex-
plore leveraging the collective expertise of multiple LLMs
for search-based reasoning, which, to the best of our knowl-
edge, has not been previously tested. Figure 1 illustrates the
reasoning accuracy on the MATH-500 dataset as a function
of search diversity. The performance of search using a sin-
gle LLM initially improves with increased temperature but
subsequently degrades, remaining consistently lower than
that of multiple-LLM search.

In this work, we propose Mixture-of-Search-Agents
(MOSA), an advanced paradigm for step-wise search-based
reasoning that aggregates the complementary strengths of
multiple LLMs, leveraging both independent and collabo-
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rative contributions to search for reasoning sub-steps more
effectively. As illustrated in Figure 3, multiple LLMs pro-
pose diverse potential search directions at each reasoning
step, either independently or through iterative refinement
of each other’s outputs. This hybrid approach ensures that
the reasoning process is not constrained by the limitations
or biases of any single model. For instance, one model
may excel at identifying a promising initial direction, while
another might build on it to refine or extend the reasoning
path. By combining independence and collaboration, the
framework avoids local optima while enhancing reasoning
accuracy in the search process.

We performed a comprehensive evaluation of MOSA across
four reasoning benchmarks. The findings indicate that
MOSA consistently outperforms its single-LLM counter-
part in reasoning accuracy with an average improvement of
1.71%. Additionally, our results indicate a synergistic inter-
action between multi-agent collaboration and search-based
reasoning. Further analysis and ablation studies reveal a
key challenge for single-agent search-based reasoning: bal-
ancing diversity and quality varies across different bench-
marks. We also confirm a positive correlation between
reasoning performance and the number of distinct search
agents, validating the efficacy of multi-agent search. Finally,
experiments with an extended action set demonstrate the
robustness of MOSA across diverse types of search actions.

2. Method
Search-based methods have been extensively used to tackle
complex reasoning tasks, such as coding and mathematics,
by breaking these problems into multiple search steps (Zhou
et al., 2023b; Yao et al., 2024; Hao et al., 2023). Our pro-
posed paradigm is readily applicable to various search al-
gorithms, with the Monte Carlo Tree Search (MCTS) algo-
rithm (Kocsis & Szepesvári, 2006; Coulom, 2007) adopted
as the search backbone in this work. This section first intro-
duces the baseline MCTS-based reasoning method with a
single search agent (Hao et al., 2023; Qi et al., 2024) in § 2.1,
followed by our method, which leverages the expertise of
multiple LLMs as search agents in § 2.2.

2.1. Baseline Framework

Overview Given a problem x and a generator π∗, MCTS
involves iteratively building a search tree starting from the
root node x. We first define the state space S and the action
space A. In our case, each state sj ∈ S captures the actions
(i.e., reasoning steps) generated so far alongside a specific
trajectory in the search tree, while each action aj ∈ A rep-
resents the next reasoning step based on the current state
and the type of action chosen. As shown in the upper part of
Figure 2, given the selected node si (i.e., the reasoning steps
generated so far), a step of Expansion essentially creates a
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Figure 2: Top: An overview of the root node s0 and its
expanded child nodes. Bottom: The detailed framework for
generating new actions (i.e., sampling sub-questions and
sub-answers).

set of child nodes. A child node is created by concatenat-
ing si with the new action, with that action being the next
reasoning step generated by a search agent (e.g., an LLM)
given si.

Action Space We follow rStar (Qi et al., 2024) to define a
comprehensive set of actions into MCTS-based LLM rea-
soning. The set of actions, A = {A1, A2, A3, A4, A5},
includes:

• A1: Propose a one-step thought;

• A2: Propose the remaining thought steps;

• A3: Propose the next sub-question along with its an-
swer;

• A4: Answer the sub-question again;

• A5: Rephrase the question.

Among these actions, we designate A3 as the primary ac-
tion, comprising a sub-question and its corresponding sub-
answer, i.e., actioni ≡ concat(sub questioni, sub answeri).
For instance, an action can be “### Sub-question 3: Does
the sum of the previous two digits equal 8? ### Sub-answer
3: The two digits are 3 and 5. We have 3+ 5 = 8, so the an-
swer is yes.”. We consider the other actions along with their
effects in an ablation analysis (§ 4.3). We present a detailed
illustration of generating new actions, i.e., combinations of
sub-question & sub-answer in Algorithm 1. For a given
state si, the algorithm traverses all possible actions, where
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Algorithm 1 GenerateActions: A function for generating actions, i.e., a sub-question along with a sub-answer, given the current
state. The implementation of this function using conventional MCTS and MoSA mainly differs in two aspects: (1) In conventional MCTS
methods, the number of search agents m = 1, while for MOSA, m > 1. (2) The FinalizeSubAnswer function employs heuristic
majority voting for single-model search, while employing an additional neural aggregation function for MOSA (see the right section of
Figure 3).

Require: Selected node si; Number of sub-questions nq; Number of candidate sub-answers per sub-question na; A set of LLMs
πmix = {π1, π2, ..., πm}

Ensure: A set of new actions new actions = {action1,action2, ...,actionnq}
Initialize new actions← ∅ % Prepare the set of new actions
for i = 1 to nq do
πsub q ← SelectLLM(πmix) % Select an LLM for generating sub-question
sub questioni ← GenerateSubQuestion(πsub q, si) % Generate the i-th sub-question
Initialize candidate sub answers← ∅ % Store candidate sub-answers for sub-question i
for j = 1 to na do

πsub a ← SelectLLM(πmix) % Select an LLM for generating a sub-answer
candidate sub answerj ← GenerateSubAnswer(πsub a, si,sub questioni) % Generate the j-th
candidate sub-answer
candidate sub answers.add(candidate sub answerj) % Store the candidate sub-answer

end for
sub answeri ← FinalizeSubAnswer(candidate sub answers) % Aggregate or vote on candidate
sub-answers
actioni ← concat(sub questioni,sub answeri) % Form the final action by concatenation
new actions.add(actioni) % Add the action to the set of new actions

end for
return new actions

the final sub-answer for each sub-question is determined by
a heuristic function, e.g., majority voting.

Reward Function Following Hao et al. (2023); Qi et al.
(2024), we consider a simple yet effective reward function:
actions that frequently lead to correct final answers are as-
signed higher rewards. Specifically, Q(s, a), the reward
value for node s created by action a, receives a positive
reward if a trajectory containing node s reaches a correct
final answer, and no reward otherwise. Since the gold an-
swer is not available during testing, the confidence given
by majority voting is regarded as an approximation of the
reward value.

MCTS Iterations Typically, each MCTS iteration in-
volves four steps: Selection, Expansion, Simulation, and
Back-propagation. To balance exploration and exploitation,
we adopt the widely-used Upper Confidence Bounds for
Trees (UCT) algorithm (Kocsis & Szepesvári, 2006) for
Selection. Formally, a node s is selected to maximize:

UCT(s, a) =
Q(s, a)

N(s, a)
+ c

√
lnNparent(s)

N(s, a)
(1)

where Nparent(s) is the number of times the parent node
of s has been visited, N(s, a) is the number of times node
s has been visited, and c is a constant. Once the node s
is selected, an Expansion step is performed to add child
nodes to s. After that, starting from a random child node,
a Simulation is performed using the default rollout policy
until a terminal node is obtained or a predefined maximum
depth is reached. The outcome of the simulation determines
the reward, which is then propagated back up the tree during

the Back-propagation step. Upon multiple iterations, we
consider each leaf node as a solution. In this work, we focus
on Expansion, which aims to effectively expand the search
space.

Sampling Diversity Applying stochastic sampling tech-
niques in LLM generation is essential for introducing di-
versity to MCTS. As presented in the lower part of Fig-
ure 2, given the selected state s0, the sub-questions and
the sub-answer candidates are all stochastically sampled
using temperature scaling, top-k sampling and nucleus sam-
pling (Holtzman et al., 2020). In § 4.1, we empirically alter
search diversity by manipulating generation temperature for
single-LLM search.

2.2. Mixture-of-Search-Agents

Conventional Monte Carlo Tree Search (MCTS) methods
utilizing a single model face two significant limitations: (1)
Encouraging search diversity while maintaining generation
quality is challenging (Zhang et al., 2020), necessitating
meticulous tuning of sampling parameters to balance the
trade-off between these aspects; (2) using heuristic metrics
like majority voting to determine the final sub-answer can
be less accurate when the model favors incorrect search di-
rections. To this end, we explore a simple yet effective alter-
native, Mixture-of-Search-Agents (MOSA), which employs
multiple agents to perform search algorithms like MCTS
and utilizes a neural function to refine the candidate step-
wise outputs. Firstly, leveraging the distinct distributions
from different models intrinsically yields better generation

3



Multi-LLM Collaborative Search for Complex Problem Solving
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Figure 3: Generate three new actions using MOSA. Left: Use MOSA to propose sub-questions and sub-answers. Right: Use
MOSA to aggregate candidate sub-answers.

diversity, alleviating the necessity for sampling parameters
optimization. Additionally, incorporating a neural function
enhances the robustness of answer aggregation.

Figure 3 illustrates how our method generates three new
actions starting from the current node si. Unlike vanilla
single-model search, MOSA employs multiple agents (de-
noted by distinct colors) to explore diverse actions, such
as sub-questions and sub-answers. In the remainder of this
section, we illustrate two roles performed by MOSA when
generating new actions in MCTS. Specifically, we will start
with the straightforward improvement, MOSA as Proposers,
where multiple agents are involved for sampling actions;
then we will introduce the more intricate MOSA as Aggre-
gators, which extends the heuristic majority voting method
to an aggregating phase where multiple LLMs read and
refine the answers given by all.

MOSA as Proposers to Diversify Actions The left side
of Figure 3 shows MOSA as Proposers, where the single
search agent adopted by the baseline MCTS method (as in
Figure 2) is replaced by MOSA. MOSA leverages multiple
LLMs to enhance action diversity by fulfilling two sub-roles:
multi-agent proposers that generate sub-questions and sub-
answers.

Generating a new search action begins with sampling a
sub-question from the current state si. The sub-question
proposing phase essentially controls the directions of the
current search step because whatever follows within this step
is constrained by the scope of that sub-question. Because of
this, we consider maintaining the independence among sub-
questions, ensuring that the initial search direction indicated
by each sub-question is independent of others. As shown
in the upper-left part of Figure 3, this effectively diversifies
the sampled sub-questions as the same si is colored with
distinct characteristics after going through different LLMs.

After the initial search directions are created, the target is to
comprehensively explore each search direction. To achieve
this, each sub-question is answered by various LLMs, gen-
erating a diverse set of candidate sub-answers. These candi-
dates are then aggregated to reach a finalized sub-answer. A
simple yet effective aggregating method is majority voting,
leveraging the principle of self-consistency (Wang et al.,
2023).

MOSA as Aggregators for Collaborative Refinement
We introduce a neural function, termed “aggregator”, to
mitigate the limitation of majority voting for selecting the
final answer. An aggregator leverages the innate capability
of the LLM to critique, compare and aggregate multiple
answers into a final answer. Specifically, we prompt each
LLM to consolidate all responses into an aggregated an-
swer (see Appendix B for detailed prompts), resulting in
a new set of aggregated answers as illustrated in the right
section of Figure 3. The underlying intuition is that this
aggregation process enhances the likelihood of producing
correct answers by facilitating comparisons among differ-
ent responses, thereby increasing the overall success rates
for correct answers under majority voting. We present an
example below to illustrate this intuition.

In the previous section, we consider majority-voting after
obtaining candidate sub-answers from diverse proposers.
Let us consider a sub-question that requires 3 sub-answers
to be generated and an MOSA component consisting of 3
distinct LLMs. We simply assume that each LLM proposes
one sub-answer. If there are k LLMs that are proficient
at this sub-question and the other 3 − k are not, then it is
likely that we would have k good sub-answer candidates
and 3 − k bad candidates1. With majority voting, a bad

1For clarity in illustrating our motivation, we simplify the cor-
rectness of candidate sub-answers into two groups: good and bad.
This abstraction helps explain the role of aggregators in improving

4



Multi-LLM Collaborative Search for Complex Problem Solving

finalized answer is likely if k ≥ 2.

Now we turn to use MOSA to aggregate the candidate sub-
answers and then include the aggregated sub-answers into
majority-voting. The inputs for all three aggregator LLMs
are the same, which concatenates the sub-question and all
the three candidate sub-answers. We hypothesize that a bad
aggregator that receives at least a good sub-answer could
yield a sub-answer that is at least better than its original bad
sub-answer. Such a hypothesis has been empirically verified
in the case of instruction following by Wang et al. (2024b),
who showed that many LLMs can generate higher-quality
responses by building upon outputs from other LLMs. Thus,
if the two bad aggregator LLMs can learn from the good
sub-answer and generate good aggregated sub-answers, then
we will have 4 good sub-answers and 2 bad ones, which
lead to a good finalized sub-answer.

3. Experiments
3.1. Baselines

Few-shot Chain-of-Thought (CoT) (Wei et al., 2023) feeds
the LLM with a few demonstrations followed by the input
question. Since we are using instruction-tuned LLMs, we
format the demonstrations as multi-turn dialogues. In each
turn, the human asks a question and then the assistant an-
swers it.

Self-Consistency@n (Wang et al., 2023) also adopts the
few-shot CoT prompting scheme, but it samples n indepen-
dent answers per instance. The final answer is then given by
majority voting over the n candidate answers. Except for the
conventional single-LLM self-consistency experiments, we
also evaluate self-consistency with multiple different LLMs.
Such a multi-LLM self-consistency setting can be regarded
as a simplified version of Wang et al. (2024b), which col-
lects direct answers from various agents and aggregates
them with majority voting.

Reasoning-via-Planning (RAP) (Hao et al., 2023) is a
representative LLM-based reasoning method using MCTS.
We use it as the foundation to apply MOSA. In each search
step, RAP generates one or more sub-questions along with
their sub-answers. The original RAP paper adopted different
reward functions for different types of tasks. In this work,
we use the simple self-consistency score as the reward value,
which has been shown to be competitive with those manually
designed ones in Appendix A.1 of Qi et al. (2024). Note
that we ensure the total number of LLM forward calls of
a single-LLM method are approximately the same as its
multi-LLM counterpart, e.g., RAP versus RAP + MOSA as
Proposers in Table 1.

answer correctness, though actual correctness exists on a spectrum
depending on task complexity and evaluation criteria.

rStar (Qi et al., 2024) is one of the recent SoTA MCTS-
based LLM reasoning methods. The authors proposed a
comprehensive set of search actions, which we have intro-
duced in § 2.1. We adopt their innovative set of actions to
evaluate the effects brought by the scope of action set on
MOSA in § 4.3.

3.2. Experimental Settings

Benchmarks We perform evaluation on four reasoning
benchmarks covering different scopes, including three math-
ematical reasoning datasets (GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), MATH-500 (Hendrycks et al.,
2021; Lightman et al., 2023)) and one commonsense rea-
soning dataset (StrategyQA (Geva et al., 2021)).

Models We adopt four open-sourced instruction-following
LLMs to formulate the LLM pool of MOSA: Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), Qwen-2-7B-Instruct (Yang
et al., 2024), Ministral-8B-Instruct-2410 (Mistral, 2024),
and GLM-4-9B-Chat (GLM et al., 2024). The number of
LLMs could also be made larger or smaller, depending on
customized choices. Our later experiments will show that
benchmark performances are positively correlated with the
number of distinct LLMs.

Implementation Details For few-shot CoT baselines, we
report the results of all four LLMs. For other single-LLM
baselines, like Self-Consistency@n and RAP, we adopt
Llama-3.1-8B-Instruct due to its competitiveness and ro-
bustness across various benchmarks. For all experiments
regarding sampling from multiple LLMs, we try to maintain
a pseudo uniform distribution for the SelectLLM function
in Algorithm 1. That is, if 7 completions need to be sampled
and there are 4 distinct LLMs, we manually assign each
LLM to sample one completion and then uniformly sample
3 LLMs out of 4 without replacement to finish the remain-
ing 3 completions. Hyper-parameter settings are listed in
Appendix A.

3.3. Main Results

We report the main results on the four benchmarks in Table 1.
Below we highlight our key findings.

MOSA Leads in Reasoning Tasks RAP + MOSA as Pro-
posers & Aggregators consistently yields superior perfor-
mances across all datasets (GSM8K, SVAMP, MATH-500,
StrategyQA), reaching an average performance (Avg.) of
79.97%. Specifically, it obtains exceptional improvements
(+1.8%) over the best baseline on the challenging MATH-
500 benchmark, suggesting it is effective at handling com-
plex reasoning problems.

Synergistic Effect between Multi-Agent Collaboration
and Search-based Reasoning MOSA integrates two re-
search paradigms: multi-agent collaboration and search-
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Table 1: Main results. Those rows marked by ‡ were reported by the rStar paper (Qi et al., 2024) using Llama-3-8B-Instruct.
All other results are reported by our experiments. MULTI refers to multi-LLM while STG represents StrategyQA. The
highest number on each dataset is marked in bold while the secondary high is underlined.

METHOD MULTI? SEARCH? GSM8K SVAMP MATH STG AVG.

FEW-SHOT COT:
◦ LLAMA-3.1-8B-INSTRUCT × × 84.00 86.80 41.60 67.39 69.95
◦ MINISTRAL-8B-INSTRUCT-2410 × × 82.41 89.20 40.00 70.60 70.55
◦ QWEN-2-7B-INSTRUCT × × 84.00 88.60 24.20 66.67 65.87
◦ GLM-4-9B-CHAT × × 83.85 89.70 40.00 71.32 71.22

w/ LLAMA-3.1-8B-INSTRUCT:
◦ SELF-CONSISTENCY@4 × × 88.02 89.70 43.80 69.43 72.74
◦ SELF-CONSISTENCY@32 × × 90.37 92.40 44.80 70.89 74.62
◦ SELF-CONSISTENCY@128 × × 90.98 93.30 52.20 71.32 76.95
◦ SELF-CONSISTENCY@256 × × 90.90 92.90 53.20 71.03 77.01

w/ ALL FOUR LLMS:
◦ SELF-CONSISTENCY@4

√
× 90.45 92.20 46.20 70.45 74.82

◦ SELF-CONSISTENCY@32
√

× 90.75 93.20 52.60 71.76 77.08
◦ SELF-CONSISTENCY@128

√
× 91.21 93.70 53.80 72.78 77.87

◦ SELF-CONSISTENCY@256
√

× 90.98 93.50 54.20 71.47 77.54
RAP ‡ ×

√
80.59 85.70 18.80 68.71 63.45

RAP ×
√

90.52 91.60 53.00 75.40 77.63
+ SINGLE-LLM AS AGGREGATOR ×

√
90.05 92.50 54.80 75.69 78.26

+ MOSA AS PROPOSERS
√ √

91.13 94.50 54.60 75.69 78.98
+ MOSA AS PROPOSERS & AGGREGATORS

√ √
91.96 94.90 56.60 76.42 79.97

based reasoning. When applied independently, each
achieves moderate improvements, but their combination
yields significantly enhanced results due to synergy effects.
(1) Transitioning from single-agent to multi-agent: Across
all four benchmarks, transitioning from a single LLM to
multiple LLMs with the best non-search baseline (Self-
consistency) results in an average absolute improvement of
+0.53%. By contrast, transitioning from single-agent search
(RAP) to multi-agent search (MOSA as Proposers) yields a
larger average absolute improvement of +1.35%. Augment-
ing with aggregators further increases the improvement from
single-agent search (RAP + Single-LLM as Aggregator) to
multi-agent search (MOSA as Proposers and Aggregators),
achieving +1.71%. (2) Transitioning from non-search to
search-based reasoning: Using a single LLM, the perfor-
mance gap between non-search (Self-consistency@256) and
search (RAP) is +0.62%. This gap widens to +1.44% when
employing multiple LLMs, showcasing the synergy between
multi-agent collaboration and search. These results high-
light that combining multi-agent collaboration with search-
based reasoning yields significantly greater performance
gains than applying either approach in isolation.

Boosting Search-based Reasoning with MOSA as Aggre-
gators While vanilla RAP performs well, the inclusion
of aggregators, particularly with MOSA as Aggregators,
significantly enhances performance. For instance, augment-
ing RAP with a single-LLM aggregator yields an average
improvement of +0.63%. This improvement increases to
+0.99% when MOSA as Proposers is further enhanced with

MOSA as Aggregators.

Search-Based Methods Excel in Complex Reasoning
Tasks The best accuracy numbers on GSM8K and SVAMP,
both exceeding 90%, suggest these datasets are relatively
easier. In contrast, MATH-500 and StrategyQA, with best
scores around 55% and 80%, respectively, are more chal-
lenging. Notably, search-based methods demonstrate a clear
advantage on these more complex datasets, underscoring
their effectiveness in tackling intricate reasoning tasks. Take
StrategyQA as an example, the best accuracy number with
non-search methods (Self-consistency) is 72.78%, which is
significantly lower than the best search counterpart (RAP)
accuracy (75.69%).

4. Analysis
We perform a comprehensive analysis on MOSA in this sec-
tion. Specifically, we scale the diversity of the single-LLM
search baseline in § 4.1 and compare it with MOSA. In § 4.2,
we vary the number of distinct LLMs in MOSA. In § 4.3,
we combine MOSA with the rich set of actions proposed by
Qi et al. (2024). Finally, we evaluate variations of MOSA
by ablating the numbers of proposers and aggregators in
§ 4.4.

4.1. Diversity versus Performance

For single-LLM search, a common technique to increase
generation diversity is to manipulate with decoding hyper-
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Table 2: The results of MOSA combined with rStar (Qi et al., 2024), a recent SoTA MCTS-based reasoning method that
extends the set of actions. Those results marked with ‡ were reported by the rStar paper using Llama-3-8B-Instruct. All
other results are reported by our experiments. The definitions of A{1, 2, 3, 4, 5} are in § 2.1. The highest number on each
dataset is marked in bold while the secondary high is underlined.

METHOD ACTION SET GSM8K SVAMP MATH STG AVG.

RAP ‡ A{2, 3} 80.59 85.70 18.80 68.71 63.45
RAP A{2, 3} 90.52 91.60 53.00 75.40 77.63

+ MOSA AS PROPOSERS A{2, 3} 91.13 94.50 54.60 75.69 78.98
+ MOSA AS PROPOSERS & AGGREGATORS A{2, 3} 91.96 94.90 56.60 76.42 79.97

RSTAR ‡ A{1, 2, 3, 4, 5} 88.70 91.89 38.30 71.47 72.59
RSTAR A{1, 2, 3, 4, 5} 91.36 93.30 59.00 74.96 79.66

+ MOSA AS PROPOSERS A{1, 2, 3, 4, 5} 91.96 95.60 63.20 75.11 81.47
+ MOSA AS PROPOSERS & AGGREGATORS A{1, 2, 3, 4, 5} 92.04 95.10 63.60 75.40 81.54

parameters, e.g., the sampling temperature. We modify the
temperature of the RAP + Single-LLM as Aggregator base-
line on two datasets, with T = {0.25, 0.5, 0.75, 1.0, 1.25}.
Diversity is assessed by calculating the {1, 2, 3, 4}-gram
Vendi Score (Friedman & Dieng, 2023) across search trajec-
tories. Figure 4 illustrates that while the reasoning accuracy
of RAP initially improves with increasing diversity, it sub-
sequently declines. More importantly, the two benchmarks
favor different temperature values. This suggests that at-
taining an optimal balance between diversity and reasoning
performance requires careful tuning, as balancing diversity
and quality can be challenging (Zhang et al., 2020). In con-
trast, RAP + MOSA with the default sampling parameters
consistently holds an advantageous position.

4.2. Ablation of LLM Collaboration

To evaluate the impact of varying the number of different
LLMs in MOSA, we conduct an analysis using 1 to 4 LLMs
across four benchmarks, prioritizing them in the following
order: Llama, GLM, Qwen, Ministral. All four variants
utilize approximately the same number of LLM forward
calls, ensuring that the only variable is the number of dis-
tinct LLMs involved. Figure 5 shows that increasing the
number of different LLMs generally correlates with higher
reasoning accuracy, except for a slight decrease in perfor-
mance when the number of LLMs increases from 3 to 4
on MATH-500. This trend indicates that the diverse exper-
tise contributed by different LLMs significantly enhances
search-based reasoning performance.

4.3. Support for Extended Action Set

rStar (Qi et al., 2024) proposes using a comprehensive set
of actions in MCTS-based LLM reasoning. Since enriching
the action set is orthogonal to our method, we hypothesize
that MOSA is compatible with the enlarged action set. The
results in Table 2 support our hypothesis. For example,
rStar combined with MOSA boosts the reasoning accuracy
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Figure 4: Diversity versus accuracy. T = Temperature.

on MATH-500 from 59.00% to 63.20% (+ MOSA as Pro-
posers) and 63.60% (+ MOSA as Proposers & Aggregators).
We also found that enriching the action set is not always
beneficial. On StrategyQA, the expanded action set yielded
inferior performance; however, we note that MOSA still
demonstrates improvements.

4.4. Ablation of Proposers & Aggregators

We consider to isolate the effects of MOSA as Proposers and
MOSA as Aggregators by ablating the number of distinct
LLMs for those two roles. As shown in Table 3, changing
the number of distinct proposers to be single yields a larger
decrease comparing with ablating the number of aggregators
(-1.23% versus -0.47%), suggesting that MOSA brings more
benefits as proposers.
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Table 3: Ablation analysis to isolate the effects of MOSA as proposers and as aggregators, respectively, for search-based
reasoning. By multi, we are referring to the default setting in our experiments, i.e., 4 distinct LLMs. The highest number
on each dataset is marked in bold while the secondary high is underlined.

#PROPOSER(S) #AGGREGATOR(S) GSM8K SVAMP MATH STRATEGYQA AVG.

SINGLE NONE 90.52 91.60 53.00 75.40 77.63
SINGLE SINGLE 90.05 92.50 54.80 75.69 78.26
SINGLE MULTI 91.05 91.90 55.60 76.42 78.74
MULTI NONE 91.13 94.50 54.60 75.69 78.98
MULTI SINGLE 91.66 94.20 56.00 76.13 79.50
MULTI MULTI 91.96 94.90 56.60 76.42 79.97

5. Related Work
5.1. Reasoning with LLMs

The recent focus on large language models is partly due to
their exceptional performance in solving complex reasoning
tasks. A prominent example is Chain-of-Thought (CoT)
reasoning (Wei et al., 2023). Recent advancements include
self-consistency (Wang et al., 2023), problem decomposi-
tion (Zhou et al., 2023b), the use of tools (Gao et al., 2023;
Chen et al., 2023), and search-based methods (Hao et al.,
2023; Yao et al., 2024; Qi et al., 2024). Among these ap-
proaches, MOSA is most closely aligned with search-based
reasoning methods.

Search-based Reasoning Search-based reasoning has
demonstrated effectiveness, particularly for solving com-
plex, multi-step problems (Hao et al., 2023; Yao et al., 2024;
Chen et al., 2024c; Zhang et al., 2024a; Chen et al., 2024a;
Qi et al., 2024; Zhang et al., 2024b; Zhou et al., 2023a;
Koh et al., 2024). One of the recent state-of-the-art systems
in this domain is rStar (Qi et al., 2024). rStar introduces
two key innovations: (1) expanding the Monte Carlo Tree
Search (MCTS) action space from one or two actions to five;
and (2) employing a secondary LLM to verify the reasoning
trajectories generated by the primary LLM through MCTS.
In § 4.3, we empirically demonstrate that our method is
complementary to the enriched action set of rStar.

5.2. LLM Ensemble

Ensembling, a widely used technique for leveraging the
strengths of multiple models, remains highly effective in the
era of LLMs. Jiang et al. (2023) proposed pairwise rerank-
ing of LLM outputs and fusing multiple responses using
a trained generative model. Several studies have proposed
training routing functions to match queries with appropriate
LLMs (Lu et al., 2023; Shnitzer et al., 2023; Wang et al.,
2024a). Others have proposed averaging the output distribu-
tions of multiple LLMs (Huang et al., 2024).

Another line of research focuses on multi-agent collabo-
ration, where multiple LLMs interact to discuss or debate
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Figure 5: Reasoning accuracy with different number of
distinct LLMs as search agents.

specific topics (Du et al., 2023; Liang et al., 2024; Chan
et al., 2023; Xu et al., 2023; Liu et al., 2024; He et al.,
2023; Chen et al., 2024b; Zhang et al., 2024c). Common
design variations in this paradigm include role assignments
for LLMs (e.g., debaters and judges) and discussion mecha-
nisms (e.g., symmetric versus asymmetric interactions).

6. Conclusion
In this work, we investigated a novel paradigm called
MOSA. MOSA combines independent exploration and itera-
tive refinement among multiple LLMs to enhance reasoning
diversity and accuracy. Experiments across benchmarks
demonstrate its consistent advantages over single-LLM and
multi-agent baselines, especially in complex tasks. This
work underscores the potential of multi-agent collaboration
in advancing search-based reasoning.
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A. Additional Experimental Settings
A.1. Hyper-parameters

The default sampling parameters for LLM generation are {temperature=0.75, top k=40, top p=0.95}. Across all MCTS
experiments, we set the number of rollouts to 8, the number of sub-questions per node to 4, the number of candidate
sub-answers per sub-question to 4, the maximum depth allowed to 5.

A.2. Dataset Statistics

Since we make use of the rStar code base 2 to implement MOSA, we directly adopt the data files released in their git
repository. There are 1,319 instances in GSM8K, 1,000 instances in SVAMP, 500 instances in MATH-500, and 687 instances
in StrategyQA.

B. Additional Implementation Details for Aggregators
In this section, we will show the basic instruction and several in-context learning demonstrations for aggregators.

2https://github.com/zhentingqi/rStar/
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Basic Instruction for Aggregators

**TASK**:
You are an intelligent and supportive AI assistant. You will receive a collection of responses from various AI assistants regarding
a query. Your goal is to synthesize these responses into a single, high-quality response. You should first write down your thoughts
as ”### Thoughts: <THOUGHTS>.”, and then write down the synthesized response in the format of ”### Synthesized Response:
<SYNTHESIZED RESPONSE>.”. If ”The answer is: <ANSWER>” appears in the set of responses, you should also write
down ”The answer is: <ANSWER>”; otherwise, do not write it.
1. Critically assess the information in the responses, as some may be biased, incorrect, or nonsensical.
2. Your synthesized response should not merely echo the provided answers but should present a refined, accurate, and thorough
response to the prompt.
3.Ensure that your response is well-organized, coherent, and meets the highest standards of accuracy and reliability.
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An Example ICL Demonstration of MATH-500 for Aggregators: User Query

User:
[Here is the user query that was fed into those AI assistants]:
Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence, ending
with ”The answer is <a numeric answer >”. When the original question is answerable, please start the subquestion with ”Now
we can answer the question: <original question>”.
Question 5: Find the product CD of the integers C and D for which

C

x− 3
+

D

x+ 8
=

4x− 23

x2 + 5x− 24

for all real values of x except −8 and 3.
Question 5.1: What is the equation obtained by multiplying both sides of the given equation by (x− 3)(x+ 8)?
Answer 5.1: (x− 3)(x+ 8) · C

x−3
+ (x− 3)(x+ 8) · D

x+8
= (x− 3)(x+ 8) · 4x−23

x2+5x−24

This simplifies to C(x+ 8) +D(x− 3) = 4x− 23.
The answer is C(x+ 8) +D(x− 3) = 4x− 23.
Question 5.2: What are the values of C and D that satisfy the equation C(x+ 8) +D(x− 3) = 4x− 23 for all x except −8
and 3?
Answer 5.2:
[Here are the responses from various AI assistants]:
Response 1:
To find the values of C and D, we can substitute specific values of x into the equation C(x + 8) +D(x − 3) = 4x − 23 to
obtain a system of equations.
Question 5.2.1: What happens if we substitute x = 3 into the equation C(x+ 8) +D(x− 3) = 4x− 23?
Answer 5.2.1: Substituting x = 3 gives C(3 + 8) +D(3− 3) = 4 · 3− 23, which simplifies to 11C = −11. The answer is
11C = −11.
Question 5.2.2: What happens if we substitute x = −8 into the equation C(x+ 8) +D(x− 3) = 4x− 23?
Answer 5.2.2: Substituting x = −8 gives C(−8 + 8) +D(−8− 3) = 4 · (−8)− 23, which simplifies to −11D = −59. The
answer is −11D = −59.
Question 5.2.3: Now we can answer the question: What are the values of C and D?
Answer 5.2.3: Solving the system of equations 11C = −11 and −11D = −59 gives C = −1 and D = 7/11 · 11 = 7. The
answer is -1 and 7 respectively.
Response 2:
To find the values of C and D, we can compare the coefficients of the corresponding terms on both sides of the equation.
For the x2 terms, we have C +D = 0.
For the x terms, we have 8C − 3D = 4.
Solving these equations simultaneously, we find that C = 3 and D = −3.
Therefore, the product CD = 3 · (−3) = −9 .
Response 3:
To find C and D, we can substitute x = −8 and x = 3 into the equation C(x+ 8) +D(x− 3) = 4x− 23.
For x = −8:

C(−8 + 8) +D(−8− 3) = 4(−8)− 23

−11D = −55

D = 5

For x = 3:
C(3 + 8) +D(3− 3) = 4(3)− 23

11C = −13

C = −13

11

Now we can answer the question: What is the product CD of the integers C and D?

CD =

(
−13

11

)
(5) = −65

11

The answer is − 65
11

.
Response 4:
To find C and D, we can set x = 3 and x = −8 to get two equations:
1. C(3 + 8) +D(3− 3) = 4(3)− 23⇒ 11C = −11⇒ C = −1
2. C(−8 + 8) +D(−8− 3) = 4(−8)− 23⇒ −11D = −55⇒ D = 5
The answer is C = −1 and D = 5.
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An Example ICL Demonstration of MATH-500 for Aggregators: Assistant Response

Assistant:
### Thoughts:
1. The responses generally attempt to solve the equation C(x+ 8) +D(x− 3) = 4x− 23 by substituting specific values for x,
namely x = 3 and x = −8.
2. The correct method involves creating a system of linear equations by substituting these values and solving for C and D.
3. There is a discrepancy in the values of C and D obtained in the responses:
- Some responses correctly find C = −1 and D = 5.
- Another response incorrectly finds C = −13/11 and D = 5.
- Another response finds C = 3 and D = −3, which is not consistent with the given equation.
4. The correct values should satisfy both equations derived from the substitutions.
### Synthesized Response:
The equation C(x+ 8) +D(x− 3) = 4x− 23 can be solved by substituting specific values for x:
1. Substituting x = 3:

C(3 + 8) +D(3− 3) = 4(3)− 23

11C = −11

C = −1

2. Substituting x = −8:
C(−8 + 8) +D(−8− 3) = 4(−8)− 23

−11D = −55

D = 5

Thus, the values of C and D are C = −1 and D = 5. The product CD is:

CD = (−1) · 5 = −5

The answer is: -5
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An Example ICL Demonstration of StrategyQA for Aggregators: User Query

User:
[Here is the user query that was fed into those AI assistants]:
Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence. When
the original question is answerable, please start the sub-question with ”Now we can answer the question: <original question>”.
Question 5: Johnny Carson: American talk show host and comedian. Could Johnny Carson’s children fill out a water polo team?
Question 5.1: How many children did Johnny Carson have?
Answer 5.1: Johnny Carson had three children: two daughters, Catherine and Christie, and a son, Jeff.
Question 5.2: How many players are needed to form a water polo team?
Answer 5.2:
[Here are the responses from various AI assistants]:
Response 1:
A standard water polo team consists of 13 players.
Response 2:
A water polo team consists of seven players, including one goalkeeper and six field players.
Response 3:
A water polo team consists of 13 players: 1 goalkeeper and 12 field players (7 field players and 5 substitutes).
Response 4:
A standard water polo team consists of 13 players, including 7 field players and 6 substitutes.
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An Example ICL Demonstration of StrategyQA for Aggregators: Assistant Response

Assistant:
### Thoughts:
1. The responses contain valuable information about the composition of a water polo team.
2. There is a consensus that a water polo team consists of 13 players in total. However, there is some variation in how these 13
players are categorized.
3. The key point to clarify is how many players are in the water at one time and how many are substitutes.
4. It appears that in the water during play, there are 7 players (including the goalkeeper), and the remaining players are substitutes.
### Synthesized Response:
The synthesized response is:
To form a water polo team, a total of 13 players are required. This team includes 7 players who are in the water during play,
comprising one goalkeeper and six field players. The remaining 6 players serve as substitutes.
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